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ABSTRACT

v

This document discusses results of an active flutter suppression system
analysis using a Boeing Supersonic Transport 969-300 configuration. The work
was accomplished under NASA-Langley Contract NAS1-9808. Dr. Eliahu Nissim of
the NASA-Langley Aeroelasticity Branch, Dynamic Loads Division, developed the

two concepts analyzed.
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1.0 INTRODUCTION AND SUMMARY

This report presents the results of an analytical and mechanization
study conducted for two flutter SAS concepts developed by Dr. Elishu Nissim of
the NASA-Langley Aeroelasticity Branch, Dynamic Loads Division. Concept No. 1
utilizes only the wing trailing edge control surface(s). Concept No. 2 utilizes
leading and trailing edge control surfaces operating simultaneously. Theoretically, 75
the combined use of leading and trailing edge control surfaces will improve the -
surface coupling (controllability) with vertical bending and torsional structural _ -, ,_
modes and decrease the coupling between bending and torsional modes.

‘The purpose of this study was: ‘
purp y &707” | N -
e To determine flutter speed using full scale,969§300 SST !
equations of motion augmented with flutter SAS concepts
No. 1 and No. 2.

e To develop a method of implementing these concepts for
wind tunnel testing.

The wing is configured with three leading edge control surfaces (out-
board, mid-span and inboard) and three corresponding trailing edge control
surfaces. Five combinations of control surfaces and SAS concepts were analyzed
during this study. These combinations and corresponding flutter speed improve-
ments are as follows: .

T e 4.5 percent for the outboard trailing edge surface with BTN T
flutter SAS No. 1l..

e

. e 11 percent for the leading/trailing (L/T) edge outboard T + b
surfaces with SAS No. 2.

e 28 percent for the L/T edge mid-span surfaces with SAS No. 2.
e 21 percent for the L/T edge inboard surfaces with SAS No. 2. :¢" .7

XZ ® Greater than 41 percent for the combined L/T edge inboard YET + MID LT
and mid-span surfaces with SAS No. 2.

Figure 1 illustrates the flutter problem on an airspeed root locus "
plot for the combined inboard and mid-span L/T edge surfaces at a constant o e’
Mach No. = 0.9. Airspeed was varied by changing altitude while holding Mach ;7:f.
number constant. ‘Ine tree airplane encounters instability at 422 KCAS. The “ngkb‘—
airplane augmented with flutter concept No. 2 using both inboard and mid-span
surfaces is flutter free for airspeeds up to 595 KCAS (altitude: sea level).
Figure 2 presents the third and fourth elastic mode damping ratio as a function
of airspeed for the combined surface cafiguration. Similar plots for each of
the other flutter SAS concepts are included in Section 2.0.
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All flutter concepts and surface combinations cause a low frequency
(phugoid mode) instability at the selected gains. Stability results indicate
that phase lead and a decrease in amplitude at this frequency, obtained with a
high-pass filter, would stabilize this mode.

Flutter SAS concept No. 1 using an outboard control surface is scheduled
to be mechanized and tested on NASA-Langley's 1/17 scale SST wing model.

A block disgram of the system to be mechanized is shown in Figure 3.
The primary problem associated with mechanization is that the systems require
the rate signal to be divided by frequency. Two methods of mechanizing the
flutter avgmentation systems were tested on an analog computer to assess the
. feasibility of measuring instantaneous frequency (period) based on the simple
harmonic motion relatlonsh;p w2 = laccelerat1onl/ldlsplacement| The other
method measures "period" by detecting zero-crossings. Both mechanizations
adequately measure the steady-state frequency over the frequency range of primary
interest (5 to 25 Hz).
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2.0 FLUTTER ANALYSIS
2.1 Full Scale SST Equations of Motion

Flutter analyses were conducted using the 969-300 SST configuration
at Mach 0.9 and a gross weight of 395,000 pounds. The equations were
modified to incorporate a 20 percent chord leading edge control surface.
Figure 4 shows the location of the control surfaces, and Z (vertical
translation) and © (pitch angle) response stations for the wing. Vertical
acceleration was sensed at chord (panel) stations that correspond to 30
and 70 percent chord.

The linear differential equations representing the 969-300
SST airplane configuration were written with forward speed and air density
as explicit functions. This permitted varying the forward velocity as
a function of altitude at constant Mach number to determine flutter speed.
The math model includes two rigid body and ten structural modes. The
aerodynamic theory used for the leading and trailing edge control surfaces
was steady-state lifting surface with first-order 1ift growth approximstions
Z@Eé&stwfungtignﬁ)%EPWrﬁptesent_unsteadyAaerOdynﬁmips-

2.2 Results

Both flutter SAS concepts employ a signal which has the same
amplitude as displacement but is in phase with rate. . This signal was
generated for the stability study by using phase root locus to introduce
a phase shift (eJ®) without changing the signal emplitude as a function
of frequency. A block diagram of the system as arranged for stability
analysis is shown in Figure 5.

Free airplane flutter is encountered when the third elastic
mode crosses the imaginary axis at 422 KCAS. As speed is increased
further the fourth elastic mode becomes unstable at 435 KCAS. The
trailing edge control surface primarily stabilizes the fourth elastic
mode whereas stability of the third mode is predominantly controlled with
the leading/trailing edge surfaces. This conclusion is illustrated in
Figure 6 by comparing the results for SAS No. 1 and No. 2 with outboard
surfaces. Figure 7 shows the third and fourth mode damping ratio as a
function of airspeed for the mid-span and inboard surfaces. Airspeed
root locus plots for SAS No. 1 using a trailing edge surface and for SAS
No. 2 using outboard, mid-span and inboard L/T edge surfaces are portrayed
in Figures 8 through 11.
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3.0 FLUTTER SAS MECHANIZATION

To mechanize these flutter SAS concepts it is necessary to
measure the feedback signal frequency (or period) or to generate 90
degrees phase lead. An analog computer simulation was developed to
assess the feasibility of measuring frequency using analog components.
The "frequency” measurement was based on the simple harmonic motion
relationship: @ =Qaccelerationl/|displacement]. Sections 3.1 and
3.2 describe the mechanization and performance of this technique.

A second analog simulation was utilized to evaluate a technique
that measures the signal "period™. This method eliminates some division
and square root circuits associated with the frequency method. Section
3.3 describes the mechanization and performance of this system.

3.1 -Description of Computer Circuit for Measuring Freguency

An analog computer disgram for one channel of the SAS is shown
in Figure 12. The numerator and denominator terms which form the radian
frequency (w) are passed through approximate derivative circuits to
eliminate any d.c. bias in either signal. The voltage signals from the
derivative circuits are then rectified to accommodate the electronic
multiplier division circuit producing w%. : '

Threshold logic was mechanized using a relay comparator to
alleviate the noise amplification produced by the division circuit when
the numerator and denominator voltages are small. When the voltage
representing the denominator,|Z2|, is above the threshold value the
frequency is formed by the equation uﬁ =|Zg / Z2|' When this voltage
is less than the threshold, the value of before the relay switches
is stored. This mechanization also eliminates division by zero when
the oscillatory transient solution of the plant equations decays to

zero, leaving only the steaedy state solution (as for a step plant disturbance).

While the relay comparator is switching, the numerator and

denominator voltages are both momentarily zero which causes the amplifiers

_ in the division circuit to saturate. This produces the spikes on the
time history for uf shown in Figure 13 and, without filtering, these
spikes appear in the square root as well. Several first order filters
were tried to alleviate this difficulty. The time histories shown in
Figure 13 were recorded with the filter G(8) = _10 .
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The analog components required to mechanize this single channel
on the TR-U48 computer are tabulated below:

20 Summing Amplifiers

3 Integrating Amplifiers

1 Relay Comparator

1 Electronic Comparator and Switch
3 Electronic Multipliers
11 Potentiometers

3.2 Frequency Measuring Circult Performance

The capability of the mechanization to measure instantaneous
frequency for simple harmonic motion is illustrated in Figure 14. This
figure shows the acceleration, displacement, radian frequency squared,
and the radian frequency for step chenges in freguency.

The ratio which forms the redian “frequency" is not constant,
in general, for a multi-degree-of-freedom plant containing more than
one oscillatory mode. This is due to each degree-of-freedom consisting
of a weighted sum of all the oscillatory modes. Figure 14 shows this
for a coupled two degree-of-freedom plant with two lightly demped modes.
This figure shows the two displacements and the radian "frequency" formed
by the ratio |¥3 - ®2|/]x3 - x2i.

3.3 Period Measuring Mechanization and Performance

Figure 15 illustrates the performance of the "period" measuring
mechanization for simple harmonic motion. The figure shows the system
response for input oscilletiong of 5 and 50 Hz. This method measures the
"period" by detecting zero-crossings. The system updates after each
zero-crossing and holds this value until the next crossing. Therefore, the
measured "period" is not instantaneous. An analog circuit disgram and
signal sketches for one channel of the SAS is presented in Figure 16.
This approach to measuring the period forces a trade-off between accuracy
at low frequency and speed of response since a first-order lag is used as
an gpproximate integrator. Its associated time constant determines how
fast the voltage on the integrator chenges.

The date indicates that the steady-state error in the frequency
range of interest (5 to 25 Hz) is less than 3 percent. The transient
response for a step change in frequency has a nominal rise time of
approximately 0.25 seconds. This value increases approximately 50 percent
when the step change occurs at the maximum integrator voltage.
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